
Content Syndication
with RSS and Perl

H. Wade Minter
HCS^H^H^H WebAssign
<minter@lunenburg.org>
http://www.lunenburg.org/

Raleigh Perl Mongers
Thursday, April 21, 2005

Topics Tonight

• What is content syndication/RSS?

• Generating feeds with Perl.

• Parsing feeds with Perl.

• Tools for using feeds.

What is RSS?
• Originally developed by Dave Winer at

Userland in 1997.

• RSS 0.90 debuts for the my.netscape.com
portal in 1999. Mostly XML.

• RSS 1.0 spec published in 2000. RDF, not
related to any other RSS format.

• RSS 0.92 also shows up in 2000.

• RSS 2.0 spec designed in 2002, released
under Creative Commons license in 2003.

What IS RSS?
• A way to provide content in a manner that

is easily distributed, parsed, and read by
client applications.

• A fast-growing way to publish, adopted by
blogs and major media outlets alike.

• A framework for building some pretty cool
applications.

What’s good about
RSS?

• Popular.

• Very well-supported by content generators
and consumers.

• Newer versions of the spec are under open
community development (CC license) (vs.
one-man kingdom).

What’s bad about RSS?

• Dave Winer :-)

• Spec designed by crack monkeys - each
version is incompatible with the next
(http://diveintomark.org/archives/2004/02/
04/incompatible-rss).

• Limited feature set (by design).

Atom

• New content syndication format on the
block.

• First known as Pie, then Echo, now Atom.

• Aiming to become an IETF standard.

• Version 0.3 the current “standard” version.

What’s good about
Atom?

• Designed in large part by Triangle residents Mark
Pilgrim and Sam Ruby, both of whom know their
stuff.

• Fixes many mistakes in RSS, format much more
robust.

• Is actually an entire content publishing API, instead
of just a syndication format.

• Has support of industry heavyweights like Google.

What’s bad about
Atom?

• Spec still in draft, process moving slowly.

• Much less support in toolkits and client
software.

• Perl bindings for crap.

• May be too complicated for its own good.

Focus tonight on RSS

• Most common format.

• Perl toolkits very useful.

• Questions on overview?

Generating RSS with
Perl

• Several Perl toolkits (XML::RSS, XML::RSS::
SimpleGen, Apache::RSS, etc).

• We will focus on XML::RSS.

• Good documentation in the POD.

• Requires XML::Parser, which requires
expat.

Sample Script
#!/usr/bin/perl

use warnings;
use strict;

use XML::RSS;

my $rss = new XML::RSS(version => '2.0');
$rss->channel(
 title => 'Example Feed',
 link => 'http://example.com'
);

$rss->add_item(
 title => "First Post",
 link => "http://example.com/news/articles/1.html",
 description => "Natalie Portman, hot grits, etc., etc."
);

print $rss->as_string;

Sample Output
<?xml version="1.0" encoding="UTF-8"?>

<rss version="2.0" xmlns:blogChannel="http://backend.userland.com/
blogChannelModule">

<channel>
<title>Example Feed</title>
<link>http://example.com</link>
<description></description>

<item>
<title>First Post</title>
<link>http://example.com/news/articles/1.html</link>
<description>Natalie Portman, hot grits, etc., etc.</description>
</item>

</channel>
</rss>

Notes
• Previous output was valid RSS 2.0 (use

Feed Validator at http://
www.feedvalidator.org/ to check).

• Easy interface (create the channel, add
items to it, spit out the output).

• Many other options available (categories,
dates/times, etc. - check POD).

• Can even save RSS as JavaScript print
statements (XML::RSS::JavaScript).

Real-World DB
Example

#!/usr/bin/perl -w

use strict;
use warnings;

use DBI;
use XML::RSS;
use Date::Manip;
use DateTime;
use DateTime::Format::W3CDTF;
use HTML::FromText;

How many stories do we want to show at once?
my $stories = 10;

use DBI;
my $dbh = DBI->connect("dbi:Pg:dbname=$dbname", $dbuser, $dbpass);

my $query = "SELECT * FROM news ORDER BY date_modified DESC LIMIT $stories";

my $sth = $dbh->prepare($query);
$sth->execute;

my $dt = DateTime->now;
my $f = DateTime::Format::W3CDTF->new;
my $now = $f->format_datetime($dt);

Real-World DB
Example

my $rss = new XML::RSS(version => '1.0');
$rss->channel(
 title => "ComedyWorx Player Headlines",
 link => "http://www.comedyworx.com/players/",
 description => "Headlines for ComedyWorx players",
 dc => {
 date => "$now",
 subject => "Improv",
 creator => 'webmaster@comedyworx.com',
 publisher => 'webmaster@comedyworx.com',
 rights => 'Copyright 2004, ComedyWorx',
 language => 'en-us',
 },
 syn => {
 updatePeriod => "hourly",
 updateFrequency => "1",
 updateBase => "1901-01-01T00:00+00:00",
 },
);

Real-World DB
Example (cont.)

while (my @table_row = $sth->fetchrow_array)
{
 my ($story_id, $poster, $headline, $body, $date_modified) = @table_row;
 my $epoch = UnixDate(ParseDateString($date_modified), "%s");
 my $dt = DateTime->from_epoch(epoch => $epoch);
 $dt->set_time_zone('America/New_York');
 my $f = DateTime::Format::W3CDTF->new;
 my $date = $f->format_datetime($dt);

 my $html = text2html($body, lines => 1);

 $rss->add_item(
 title => "$headline",
 link =>
 "http://www.comedyworx.com/players/news.php?action=read&story_id=$story_id",
 description => "$html",
 dc => {
 date => "$date",
 creator => "$poster",
 },
);
}

$sth->finish;

print $rss->as_string;

$dbh->disconnect;

Conclusions

• If your content is in a database, it’s absurdly
easy to provide RSS feeds.

• RSS feeds can be generated statically or
dynamically.

• Links should be permanent.

• Questions on content generation?

Still Awake?

Parsing RSS Content

• Once you have RSS content available, what
do you do with it?

• Perl toolkits can also parse RSS feeds and
let you get to the data.

• Big advantage of XML - data is standardized
and in machine-readable format.

• Once you have the data, you can do almost
anything.

Peek Inside Parsed
Feed

#!/usr/bin/perl

use warnings;
use strict;

use XML::RSS;
use LWP::Simple;
use Data::Dumper;

my $url = shift or die "Pass URL as argument";

my $content = get($url) or die "Couldn't get $url";

my $rss = new XML::RSS;

$rss->parse($content) or die "Couldn't parse content";

print Dumper($rss);

Peek Inside Parsed
Feed

[minter@carlton]$ perl parse.pl http://www.wral.com/news/topstory.rss
$VAR1 = bless({
 'channel' => {
 'http://www.ibsys.com/rss/' => {
 'annotation' => 'This is a data file
meant to be read by an RSS reader. See http://www.wral.com/rss/index.html for more information.'
 },
 'link' => 'http://www.wral.com/news/index.html?rss=ral&psp=news',
 'language' => 'en-us',
 'ttl' => '60',
 'copyright' => 'Copyright 2005, Internet Broadcasting Systems, Inc
Capitol Broadcasting Company',
 'category' => 'News',
 'title' => 'WRAL.com - Local News',
 'description' => 'Local News'
 },
 'version' => '2.0',
 'items' => [
 {
 'link' => 'http://www.wral.com/news/4394385/detail.html?
rss=ral&psp=news',
 'title' => 'Fuquay-Varina Yarn Maker To Cut Nearly Half Of
Workforce',
 'description' => 'The downturn in the textile industry has sent
another crushing blow to one Triangle town.'
 },
[...........]

Application: Display
WRAL current headlines

#!/usr/bin/perl

use warnings;
use strict;

use XML::RSS;
use LWP::Simple;

my $url = shift or die "Pass URL as argument";

my $content = get($url) or die "Couldn't get $url";

my $rss = new XML::RSS;

$rss->parse($content) or die "Couldn't parse content";

print "\n";
foreach my $item (@{$rss->{items}})
{
 print qq| {link}">$item->{title}\n|;
}
print "\n";

Headline Output
[minter@carlton minter]$ perl parse.pl http://www.wral.com/news/topstory.rss

 Fuquay-Varina Yarn Maker To Cut Nearly Half Of Workforce</
a>
 Company Bringing Hundreds Of Jobs Begins Searching For
Workers
 Bikers Support Bill That Would Give Them The Choice To Wear
Helmets
 Animal Control Officers Remove 19 Pit Bulls From Durham
House
 Local Towns' Leaders Seek Support For Clean Water Bond</
a>
 State Lawmaker Wants Casino Nights Legalized For Non-Profit
Groups
 Duke Student Admits To Making Fake IDs
 Crews Rescue Woman Trapped In Car After It Flips
 'Temporary' N.C. State Employees Seeking Back Benefits</
li>
 Former CBC Employee Honored At Local YMCA
 Defense, Prosecution Squabble Over Psychiatrist In Grenade
Attack
 Police Investigate Bank Robbery In Fayetteville
 Public Invited To Discuss Future Plans For Dorothea Dix
Hospital

Conclusions

• The XML::RSS toolkit makes parsing feeds
trivial.

• With more content being syndicated as
RSS, the ability to do interesting things with
the content increases.

• Other RSS parsing modules available on
CPAN.

Feed Readers

• Standalone applications designed to parse
RSS and Atom feeds.

• Generally let you categorize many feeds, set
update times (not too frequently!), and
keep track of what you’ve read.

• Newer ones offer synchronization.

• New ones showing up all the time.

Linux

• Straw (http://www.nongnu.org/straw/)

• LiFeRea (http://liferea.sourceforge.net/)

• Syndigator (http://
syndigator.sourceforge.net/)

MacOS X

• NetNewsWire (http://www.ranchero.com/)

• Pulp Fiction (http://
freshlysqueezedsoftware.com/products/
pulpfiction/)

• NewsFire (http://www.newsfirerss.com/)

Windows

• FeedReader (http://www.feedreader.com/)

• FeedDemon (http://www.bradsoft.com/
feeddemon/)

• NewsGator (http://www.newsgator.com/)

Other
• Bloglines (web-based) (http://

www.bloglines.com/)

• Firefox Hot Bookmarks.

• SAGE (Firefox extension) (https://
addons.update.mozilla.org/extensions/
moreinfo.php?application=firefox&id=77)

• RSSOwl (java) (http://www.rssowl.org/)

• BlogBridge (java) (http://
www.blogbridge.com/)

Random Bits

• OPML - Used for transferring subscription
lists.

• Podcasting - Syndicating more than just
text.

• Subversion logs as RSS.

• ISCABBS as RSS.

Parting Shots

• RSS is amazing.

• Once you start aggregating content with
RSS, it’s hard to stop reading.

• Perl makes it trivial to provide RSS feeds of
your content.

• Thanks.

Syndicate Me

• Personal Blog: http://www.lunenburg.org/
wade/

• BabyBlog: http://www.lunenburg.org/hayley/

• Atom project: XML::Atom::SimpleFeed
(CPAN)

